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Abstract: 

cascaded or segmented fashion across a temperature gradient. Past methods for determining materials used in segmentation were 
mainly concerned with materials that have the highest figure of merit in the temperature range', '. However, the example of SiGe 
segmented with Bi2Te3 and/or various skutterudites shows a marked decline in device efficiency even though SiGe has the highest 
figure of merit in the temperature range. The origin of the incompatibility of SiGe with other thermoelectric materials leads to a 
general definition of compatibility and intrinsic efficiency. The compatibility factor derived as = (Jl+zr - 1) a~ is a function of 
only intrinsic material properties and temperature, which is represented by a ratio of current to conduction heat. For maximum 
efficiency the compatibility factor should not change with temperature both within a single material, and in the segmented leg as a 
whole. This leads to a measure of compatibility not only between segments, but also within a segment. General temperature trends 
show that materials are more self compatible at higher temperatures, and segmentation is more difficult across a larger -T. The 
compatibility factor can be used as a quantitative guide for deciding whether a material is better suited for segmentation or 
cascading. Analysis of compatibility factors and intrinsic efficiency for optimal segmentation are discussed, with intent to predict 
optimal material properties, temperature interfaces, and/or currentheat ratios. 

It is well known that power generation efficiency improves when materials with appropriate properties are combined either in a 

Introduction 

Segmented thermoelectrics are an up and coming 
technology which if made more efficient (-15%)) could be 
commercially feasible in applications such as automotive 
heat reclamation and deep space power systems. 
Increasing the efficiency for segmented thermoelectric 
devices has presented a problem for some time; deciding 
which materials, with what properties and in what 
temperature ranges should be used. Ideally one would like 
to be able to check materials with certain interface 
temperatures against one another to determine whether 
segmentation is beneficial or even feasible. Previous 
methods asserted that maximizing Z was the main concern 
when considering segmentation compatibility'p'. However, 
numerical calculations and experimentation have shown 
that skutterudite devices segmented with any amount SiGe 
decrease device efficiency, even though SiGe has the 
highest Z value in that temperature region. 

Prior methods to determine compatibility or 
segmentation feasibility unfortunately had mixed material 
terms and only used average valued material properties'. 
Two materials in direct contact could be checked against 
one another, but a general framework for checking 
compatibility did not exist, nor did the ability to predict 
optimal average material properties for a prospective 
segment, or optimal staging. The ability to compare 
materials independently also meant comparison free of 
physical constraints such as length and area of specific 
portions of a thermoelectric device. 

Derivation of Material Reduced Efficiency 

Though the Camot efficiency is a vital part of the 
efficiency calculation of a thermoelectric device, it 

framework of reduced efficiency to avoid this problem. 
The efficiency is defined as the Carnot efficiency times the 
reduced efficiency: 

v = v c * v ,  Eq-1 

Where the Carnot efficiency is defined as: 

One assumes the device has the optimal lengtwarea 
ratio between the N and P legs. If one considers a device 
whose N and P legs have identical resistivity and thermal 
conductivity, and whose Seebeck coefficients are equal but 
of opposite sign, this effectively allows examination of the 
N and P legs independently. One assumes there are no 
radiative or convective thermal losses in the device. 

Starting from the definition that efficiency is 
electrical output power divided by heat input power, 
7 = PlQ, , it can be shown that the reduced efficiency 
takes the form: 

This can then be re-written as: 

IR 
1 -- 

QAT 
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7, = 
1 - 1 K + E L  

Eq- 4 

The extrinsic quantities of length and are can be removed 
by the following substitution: 

presents a problem when trying to compute, either 
numerically or analytically, infinitesimal segment 
efficiencies. In such cases, the Carnot efficiency drops to 
zero, and the results become trivial. Thus one works in the 
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Figure 2- Reduced efficiency surface for P-Bi2Te3 showing optimal u 
value (yellow) and temperature dependent optimal u value (red). 

Figure 3- Reduced efficiency plot for N-SiGe showing optimal u value 
(yellow) and temperature dependent optimal u value (red). 

Considering the compatibility condition, where 
material properties are now temperature dependent, it is 
important to realize that the compatibility of a material can 
change with temperature. It is possible for materials that 
are incompatible at the interface temperature to become 
compatible as one increases the hot side temperature. In 
the case where a material does become compatible in 
higher temperature regions, a material with zero resistivity, 
zero Seebeck coefficient, and the appropriate thermal 
conductivity (i.e. superconductor filler) could be used to 
bridge the compatibility gap between the two segments. 
Ideally one wants materialdsegments whose optimal u 
values are equal through the full temperature range of the 
device. 

When examining the device as a whole, the simplest 
method is to treat a segmented leg as a single material leg 
with discontinuous material properties. In this way one 
can perform the steps prescribed by equation 16 to 
calculate an optimal interface temperatures and u value for 
each leg of the device. The average u value for the whole 
device (both legs) is the current through the device divided 
by the sum of the average conduction heat through both 
legs, and is defined as: 

, - I  

The case simplifies more when considering a 
functionally graded alloy where in essence one is 
performing infinite segmentation of different materials, but 
the material properties are fully continuous through the 
temperature range. Thus one can calculate an optimal u 
value for the graded alloy and measure self-compatibility 
of the alloy over the temperature range, showing that 
efficiency of even continuous material properties is not 
only dependent on 2. 
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Figure 4- The reduced efficiency surface for a segmented P-leg, segment 
four is SiGe. u is optimized for all four segments (yellow), temperature 
dependent optimal values are in red. 

The temperature dependent optimal u value (red line 
in figure 5, given by equation 12) over an entire leg brings 
to light some interesting points about compatibility. One 
starts by assuming that the thermal conductivity takes the 
form: 

K = K , + K ,  h - 1 8  

Where the lattice component is assumed to be constant, 
and the electronic component follows the Wiedemann- 
Franz law: 

Thermoelectric materials, typically heavily doped, exhibit 
a more or less linear dependence of resistivity on 
temperature, giving the leading order approximation that 
the quantity T/p(T) is a constant, therefore leaving the total 
thermal conductivity independent of temperature. 

Assuming the Seebeck coefficient is a constant with 
temperature, and knowing that the quantity T/p(T) and the 
total thermal conductivity are, to leading order, constants; 
the temperature dependent compatibility factor, s(T), takes 
the form (where fl is a constant): 

1 Eq-20 
T 

s(T) = 



Where the conduction heat is Q,=KAT.AIL. Making the 
above substitution, one has: 

P-leg 
BizTe3 
Zn4Sb3 
CeFe4Sblz 
SiGe 

Eq- 6 

Tc (K) TH (K) S 

3 00 45 1 2.900 
45 1 677 2.119 
677 973 1.558 
973 1300 0.41 16 

The role of IIQ,.Kpla is of crucial importance to the 
absolute and reduced efficiencies. This quantity is 
composed only of intrinsic material properties, and the 
ratio of current to conduction heat, which is also an 
intrinsic property of a leg of a device. The ratio IIQ, can 
be alternately though of as the ratio of current density to 
heat density. Both current and conduction have the same 
linear dependence on length and area, thus their ratio is 
independent of those physical constraints. The reduced 
efficiency is now a function only of intrinsic material 
properties, temperature, and the intrinsic I/Qc ratio. Thus 
given an applied voltage in any thermoelectrical system, 
this ratio of current to conduction heat is an intrinsic 
property, which describes the ratio of electron movement 
to phonon movement. In a real device varying the load 
resistance or applied voltage could change the current or 
current density. For ease of notation the ratio IIQ, will be 
referred to as ‘u.’ 

In the limit where AT is very small compared to TH 
the reduced efficiency ceases to be an extrinsic quantity 
related to AT and hence length, and becomes an intrinsic 
quantity of the material: 

N-leg I Tc (K) 

Eq- 7 
a 

PK 1 u. -+ -  
a ZT 

77, = 

T,(K) I S 

One can now plot the reduced efficiency as a function of u. 

BizTe3 I 300 433 1 1.624 

Table 1- Temperature ranges for materials considered for segmentation in 
a typical P leg with their respective compatibility factors. 

~~ 

PbTe 
CoSb3 
SiGe 

433 728 1.374 
728 973 1.093 
973 1300 0.6603 

Figure 1- Plot of reduced efficiency (from equation 7) as a hnction of u, 
normalized by the Camot efficiency, for the materials listed in Table 1 .  
Black dots indicate maximizatiodcompatibility factor. 

The curves shown in figure 1 are analogous to curves 
of power versus current, where from the definition of 
efficiency, power and efficiency are linearly related, as 
well and current and u. 

The compatibility factor, s, for a material is the u 
value that maximizes the reduced efficiency. A 
maximization of equation 7 yields the compatibility factor 
as a function of intrinsic material properties and 
temperature: 

Eq- 8 
&E -1 

S G  

aT 

This shows that Z is not the only concern when 
considering compatibility and that even temperature 
independent material properties are not optimal. The 
compatibility factor can be alternately derived from a 
quadratic equation using the conversation of voltage drop 
in the device, ~AT=I. (R+RL) ,  assuming that the internal 
resistance and the load resistance have the optimal 
relationship that R, = R Jm . 

The crucial difference between cascading and 
segmentation is that the compatibility factor cannot be 
changed in a segmented leg. Current in the segmented 
device is a constant, as well as the total amount of 
conduction heat. Whereas in a cascaded device, the 
number of unicouples per stage can change, hence the 
conduction heat per unicouple is not fixed, as well as the 
ability to change current in each stage independently. 

The most basic condition for compatibility between 
segments is that the compatibility factor, s, of the first 
segment lies on a positive portion of the other segment’s u 
vs. efficiency curve. This condition, called the 
compatibility condition can be represented by the 
inequality: 

s u,, Es- 9 

Where u,,,~ is the non-trivial zero of equation 7, and is 
given by: 

a typical N leg with their respective compatibility factors. 



Closer compatibility factors indicate better compatibility 
and higher absolute efficiency. It can be shown that the 
change in efficiency after adding an infinitesimal segment 
is: 

Over a temperature region, the self compatibility is defined 
as S, where a lower value indicates higher self 
compatibility: 

Where 's' is the compatibility factor of the original device 
and q,' is the reduced efficiency of the new material. Thus 
figure 1 clearly shows how SiGe does not meet the 
compatibility condition with any of the other materials. 

The conditions for compatibility proposed by Heikes 
et.al' considered a case where only two materials in direct 
electrical and thermal contact could be checked for 
compatibility. The method proposed by Heikes et.al 
leaves some ambiguity as to the change in efficiency after 
an infinitesimal segment of new material has been added. 
This method removes that ambiguity, and asserts and 
shows that compatibility needs to be maintained through 
all segments, not just segments in direct contact. Even in 
the basic consideration of this section, compatibility 
between segments is treated in a more quantitative way 
than Heikes et.al, who are only able to draw qualitative 
information about compatibility from the infinitesimal 
case. This method later considers transient thermoelectric 
properties that yield some special cases for compatibility 
of segments, overlooked by the non-transient method of 
Heikes et.al. 

Optimization of Current and Conduction Heat 

Knowing the temperature dependent resistivity, 
thermal conductivity, and Seebeck coefficient, one can plot 
a reduced efficiency surface for a material in a given 
temperature and u region. For all materials there exists a 
relationship between temperature and u that maximizes the 
reduced efficiency. Setting the partial derivative with 
respect to u of the temperature dependent equation 7 equal 
to zero, and solving for u will derive this relationship, 
which is the temperature dependent compatibility factor: 

The result is how the optimal u value changes with 
temperature, which leads to a definition of self- 
compatibility. When a material's optimal u value changes 
drastically with temperature, a segment's optimal value for 
a temperature range tends to lower the reduced efficiency 
in all but a few temperature regions within the segment. 
However, a material whose optimal u value remains 
constant with temperature has a high degree of self- 
compatibility; in such cases a single optimal u value is 
optimal for all regions. Thus one can define the optimal 
instantaneous self-compatibility condition as: 

In practice only one u value can be chosen per leg, 
thus one would pick interface temperatures and a u value 
which maximizes all possible absolute efficiency values 
through all of the materials in a leg. In theory one wants to 
allow interface temperatures and u to vary to maximize the 
efficiency. If a segment is split into pieces, each with a 
small AT, one can take the integral average of the material 
properties over that small AT, substitute those values into 
equation 7, and multiply those reduced efficiencies by the 
Camot efficiencies of those small pieces; then summing all 
of these small pieces one can find the approximate 
absolute efficiency of the segment. In the limit where the 
number of pieces approaches infinity and AT becomes dT, 
Harman' has shown that the efficiency of an arbitrary 
temperature segment is: 

The efficiency is maximized when the exponent is 
maximized, thus if one has n segments each with a distinct 
reduced efficiency surface and non-optimized temperature 
interfaces (to prevent a trivial solution T, and TH are fixed), 
one only need solve the system of equations given by: 

This gives the optimal interface temperatures and u value 
for a leg of a device. The u value is the compatibility factor 
for the whole leg. This system of equations does not have 
analytic solutions; one must resort to numerical methods. 
Numerical calculations of device efficiency from this 
method and an accepted finite element method based on 
the method of Heikes et.a14 show a percent difference of 
only 0.42%. It can also be shown numerically for constant 
material properties that this method of efficiency 
calculation and the method based on: 

AT J l + Z T  -1 q =-. 
7'' J m + T , / T ,  

yield the same results. 

m = o  Eq- 13 

dT 



The non-trivial zero line of the reduced efficiency surface 
is (fiom equation 10): 

This shows that the zeros and u values monotonically 
decrease with temperature, which lends support the notion 
that incompatible materials segmented at a small AT tend 
to remain incompatible (more so in most cases) with a 
larger AT. Thus an already false compatibility condition 
becomes more false. Statements can be made about the 
most general aspects of compatibility and thermoelectric 
performance: 

Statement I :  Optimal u values tend to decrease with 
temperature (equation 20) 

Statement 2: Materials tend to be more self-compatible at 
higher temperatures. (equations 13 and 20) 

Statement 3: Compatibility of segments tends to decrease 
with increasing AT. 

The leading order approximation lends support to the 
qualitative compatibility method of Heikes et.al', where 
one assumes that the qualitative compatibility behavior of 
an added infinitesimal segment is the same as for some 
arbitrary finite segment. 

Cascading, Segmentation and Predicting 
Optimal Average Material Properties 

In certain cases when a material is either barely 
compatible or simply incompatible with an existing 
segmented leg, modification to either the construction of 
the device or material properties may be in order. 

One option is to cascade the segments in such a way 
that both the upper and lower stages are running at their 
respective optimal u values. One first assumes that the 
stages are running at the same current, which inherently 
constrains the conduction heat of the stages via u. From 
conservation of energy, the total conduction heat through 
both stages is the same, but the conduction heat per 
unicouple is free to change. Assuming all of this heat 
reaches the lower stage and is not localized, one now has 
an equality relationship describing the proper ratio of 
unicouples per stage (where primed and unprimed 
quantities indicate distinct stages): 

This equation simplifies to: 

g' = "device 

g 'device 

- - Eq-23 

This can simply be called the cascading ratio, which 
pertains to any number of stages; hence one could 
extrapolate this method to multi-staged devices. 

If the ratio of unicouples in the primed and unprimed 
stages is not exactly equal to the ratio g'lg, the u value for 
the staged device needs to optimized. Multiplying u in the 
primed stage only in equation 16, by the ratio of primed 
and unprimed unicouples rescales the primed stage with 
the lower stage. One then optimizes only the u value as if 
all segments and stages were thermally and electrically in 
series (segmented), using the process described by 
equation 16, but holding the interfacial temperatures 
constant. The conduction heat through the cascaded 
device has not changed; hence one is actually optimizing 
the current. 
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Figure 5- Resulting cascading ratio (from equation 23) for skutterudites 
cascaded with SiGe. 

The other option is to adjust the material parameters 
a, K, and p so that the compatibility factors are equal. 
Most important is to quantify the necessary change in u of 
the new material, if it fails the compatibility condition. 
This factor, which can be called the modular ratio, is found 
by: 

S' m = -  Eq-24 
S 

Where s' is the value for the nth segment, and s is the value 
for all of the segments before the nth segment. The modular 
ratio is material scaling for the reduced efficiency (from 
equation 7). Multiplied by the modular ratio, the ariginal 
and optimal material properties have the relationship: 

@.m=- P'K' Eq-25 

a a' 

'where the primed material properties are allowed to vary independently 

When plotted together, the absolute efficiency as a 
function of u for each segment in the P-leg of commonly 
segmented materials clearly show why SiGe is 
incompatible. The optimal u value for the first three 
segments falls on a negative portion of the SiGe efficiency 
curve breaking the compatibility condition. Simply adding 
a SiGe segment, without modification, lowers the overall 
efficiency of the leg, as shown in figure 6. 
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leg. The cascading ratio of equation 23 predicts a plausible 
staging method for segmented skutterudites and SiGe. 

Work has already begun on adapting this method to 
the compatibility of segmented and functionally graded 
alloys for use in cooling applications, where the coefficient 
of performance and temperature interfaces are optimized, 
and through a similar derivation, the reduced coefficient of 
performance is: 

The compatibility factor is found to be: U 

Figure 6- I( vs. absolute efficiency plots: Segment 1: P-Bi2Te3, Segment 
2: P-Z%Sb3, Segment 3: P-CeFe4Sb12, Segment 4: P-SiGe 

-+1 - Conclusion S =  
aT 

The method of intrinsic material efficiency lends 
itself to multi-dimensional vector methods where material 
properties can be represented by tensors, and thus 
complete thermal and efficiency analysis is possible. 

DARPA and the Office of Naval Research. 

The intrinsic efficiency of thermoelectric generators 
with transient properties is defined which leads to a 
method for the determination of optimal interface 
temperatures and intrinsic ratios of current to conduction 
heat. The optimal conditions for segmentation and 
cascading are discussed, as well as optimal theoretical 
average material properties. The derived compatibility 
factor for each segment gives conditions to be met to 
ensure compatibility between all existing segments in a 

This work was performed with funding provided by 

NOMENCLATURE: 
T, cold side temperature K 

T’ hot side temperature K 

< indiced interface temperature 

R internal resistance Q S optimal u value 
RL load resistance Q 

a average Seebeck coefficient V/K m modular ratio 
K average thermal conductivity W/(m OK) 
p average resistivity mQ . cm 
2 thermoelectric figure of merit 
a( 2‘) temperature dependent Seebeck coefficient V/K 
K( 2‘) temperature dependent thermal conductivity W/(m -K) 
p(T) temperature dependent resistivity Q . m 
Z(T) temperature dependent figure of merit 
- absolute efficiency 
-c Camot efficiency 
-r reduced efficiency 

’ R. R. Heikes and R. W. Ure, Bermoelectricy: Science and Engineering, Interscience, 1961, chp. 15 

I current A 
Qc conduction heat W 
Q, heat input at hot junction W 

p electrical power W 

s normalized self compatibility 

n number of segments or sub-segments per leg 
uI+-l optimal value of combined segments up to n-1 
u, optimal value of n* segment 
udevice optimal value of the full segmented device 
u*-Ieg optimal value of * leg of the device 
K, lattice component of thermal conductivity 
K, electronic component of thermal conductivity 
L Lorenz number 
g number of unicouples per stage 
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